JOURNAL ARTICLE

Numerical simulation of exciton dynamics in Cu2O at ultra-low temperatures within a potential trap

Sunipa Som, Frank Kieseling, Heinrich Stolz
Journal of Physics. Condensed Matter: An Institute of Physics Journal 2012 August 22, 24 (33): 335803
22836306
We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu(2)O) at ultra-low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3 and 5 K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5 K that the excitons reach local equilibrium with the lattice, i.e. that the effective local temperature is coming down to the bath temperature, while below 0.5 K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature do not come down to the bath temperature. In the first case we find that a Bose-Einstein condensation (BEC) occurs for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In the case of Auger decay, we do not find a BEC at any temperature due to the local heating of the exciton gas.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22836306
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"