Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Benefits of endocardial and multisite pacing are dependent on the type of left ventricular electric activation pattern and presence of ischemic heart disease: insights from electroanatomic mapping.

BACKGROUND: There is considerable heterogeneity in the myocardial substrate of patients undergoing cardiac resynchronization therapy (CRT), in particular in the etiology of heart failure and in the location of conduction block within the heart. This may account for variability in response to CRT. New approaches, including endocardial and multisite left ventricular (LV) stimulation, may improve CRT response. We sought to evaluate these approaches using noncontact mapping to understand the underlying mechanisms.

METHODS AND RESULTS: Ten patients (8 men and 2 women; mean [SD] age 63 [12] years; LV ejection fraction 246%; QRS duration 161 [24] ms) fulfilling conventional CRT criteria underwent an electrophysiological study, with assessment of acute hemodynamic response to conventional CRT as well as LV endocardial and multisite pacing. LV activation pattern was assessed using noncontact mapping. LV endocardial pacing gave a superior acute hemodynamic response compared with conventional CRT (26% versus 37% increase in LV dP/dt(max), respectively; P<0.0005). There was a trend toward further incremental benefit from multisite LV stimulation, although this did not reach statistical significance (P=0.08). The majority (71%) of patients with nonischemic heart failure etiology or functional block responded to conventional CRT, whereas those with myocardial scar or absence of functional block often required endocardial or multisite pacing to achieve CRT response.

CONCLUSIONS: Endocardial or multisite pacing may be required in certain subsets of patients undergoing CRT. Patients with ischemic cardiomyopathy and those with narrower QRS, in particular, may stand to benefit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app