Emerging methods for preparing iPS cells

Susumu Miyazaki, Hirofumi Yamamoto, Norikatsu Miyoshi, Hidekazu Takahashi, Yozo Suzuki, Naotsugu Haraguchi, Hideshi Ishii, Yuichiro Doki, Masaki Mori
Japanese Journal of Clinical Oncology 2012, 42 (9): 773-9
In 1998, human embryonic stem cells were first generated and were expected to contribute greatly to regenerative medicine. However, when medical treatments were performed using human embryonic stem cells, there were problems, such as transplant rejection, as well as bioethical issues. Induced pluripotent stem cells were generated from mouse and human fibroblasts in 2006 and 2007 by introducing four transcription factors (Oct3/4, Sox2, c-Myc and Klf4). This process was defined as direct reprogramming, and induced pluripotent stem cells were better tolerated. Although induced pluripotent stem cells have contributed greatly to biomedical research and regenerative medicine, high tumorigenic potential is still a critical problem due to the introduction of the oncogene c-Myc and reprogramming with a virus vector. To address this, we reprogrammed somatic cells by transfection with microribonucleic acids to avoid using virus vectors for genomic integration into the host genome. We found that it was possible to reprogram mouse and human cells to pluripotency by direct transfection of three mature microribonucleic acids (mir-200c, -302s and -369s) with increased expression levels in embryonic stem cells and induced pluripotent stem cells. The microribonucleic acid-induced pluripotent stem cells have a reduced risk of mutations and tumorigenesis. Our laboratory also introduced four transcription factors (Oct3/4, Sox2, c-Myc and Klf4) into cancer cells, generating induced pluripotent cancer cells that exhibited strikingly less malignant features, suggesting the possibility of a novel type of cancer therapy. However, the gene transduction method is not yet safe for clinical applications, due to a genomic integration that may cause tumor formation. We are currently investigating the reprogramming method using microribonucleic acids in cancer cells to develop a very safe, highly efficient and highly complete reprogramming for clinical applications.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"