EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effect of in situ augmentation on implant anchorage in proximal humeral head fractures.

Injury 2012 October
INTRODUCTION: Fracture fixation in patients suffering from osteoporosis is difficult as sufficient implant anchorage is not always possible. One method to enhance implant anchorage is implant/screw augmentation with PMMA-cement. The present study investigated the feasibility of implant augmentation with PMMA-cement to enhance implant anchorage in the proximal humerus.

MATERIALS AND METHODS: A simulated three part humeral head fracture was stabilised with an angular stable plating system in 12 pairs of humeri using six head screws. In the augmentation group the proximal four screws were treated with four cannulated screws, each augmented with 0.5ml of PMMA-cement, whereas the contra lateral side served as a non-augmented control. Specimens were loaded in varus-bending or axial-rotation using a cyclic loading protocol with increasing load magnitude until failure of the osteosynthesis occurred.

RESULTS: Augmented specimens showed a significant higher number of load cycles until failure than non-augment specimens (varus-bending: 8516 (SD 951.6) vs. 5583 (SD 2273.6), P=0.014; axial-rotation: 3316 (SD 348.8) vs. 2050 (SD 656.5), P=0.003). Non-augmented specimens showed a positive correlation of load cycles until failure and measured bone mineral density (varus-bending: r=0.893, P=0.016; axial-rotation: r=0.753, P=0.084), whereas no correlation was present in augmented specimens (varus-bending: r=0,258, P=0.621; axial-rotation r=0.127, P=0.810).

CONCLUSION: These findings suggest that augmentation of cannulated screws is a feasible method to enhance implant/screw anchorage in the humeral head. The improvement of screw purchase is increasing with decreasing bone mineral density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app