JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Cellular and molecular players in the atherosclerotic plaque progression.

Atherosclerosis initiation and progression is controlled by inflammatory molecular and cellular mediators. Cells of innate immunity, stimulated by various endogenous molecules that have undergone a transformation following an oxidative stress or nonenzymatic glycation processes, activate cells of the adaptive immunity, found at the borders of atheromas. In this way, an immune response against endogenous modified antigens takes place and gives rise to chronic low-level inflammation leading to the slow development of complex atherosclerotic plaques. These lesions will occasionally ulcerate, thus ending with fatal clinical events. Plaque macrophages represent the majority of leukocytes in the atherosclerotic lesions, and their secretory activity, including proinflammatory cytokines and matrix-degrading proteases, may be related to the fragilization of the fibrous cap and then to the rupture of the plaque. A considerable amount of work is currently focused on the identification of locally released proinflammatory factors that influence the evolution of the plaque to an unstable phenotype. A better understanding of these molecular processes may contribute to new treatment strategies. Mediators released by the immune system and associated with the development of carotid atherosclerosis are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app