Journal Article
Review
Add like
Add dislike
Add to saved papers

Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis.

The localization of atherosclerotic lesion formation to regions of disturbed blood flow associated with certain arterial geometries, in humans and experimental animals, suggests an important role for hemodynamic forces in the pathobiology of atherosclerosis. There is increasing evidence that the vascular endothelium, which is directly exposed to various fluid mechanical forces generated by pulsatile blood flow, can discriminate among these different biomechanical stimuli and transduce them into genetic regulatory programs that modulate endothelial function. In this brief review, we discuss how biomechanical stimuli generated by blood flow can influence endothelial functional phenotypes, and explore the working hypothesis of "atheroprone" hemodynamic environments as "local risk factors" in atherogenesis. In addition, we consider the therapeutic implications of the activation of "atheroprotective genes" and their role as "critical regulatory nodes" in vascular homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app