JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins.

The enormous bacterial load and mechanical forces in colon create a special requirement for protection of the epithelium. In the distal colon, this problem is largely solved by separation of the bacteria from the epithelium by a firmly attached inner mucus layer. In addition, an outer mucus layer entraps bacteria to be cleared by distal transport. The mucus layers contain a network of Muc2 mucins as the main structural component. Here, the renewal rate of the inner protective mucus layer was studied as well as the production and secretion of Muc2 mucin in the distal colon. This was performed by intraperitoneal injection of N-azidoacetyl-galactosamine (GalNAz) that was in vivo incorporated during biosynthesis of O-glycosylated glycoproteins. The only gel-forming mucin produced in the colon is the Muc2 mucin and as it carries numerous O-glycans, the granulae of the goblet cells producing Muc2 mucin were intensely stained. The GalNAz-labeled glycoproteins were first observed in the Golgi apparatus of most cells. Goblet cells in the luminal surface epithelium had the fastest biosynthesis of Muc2 and secreted material already three hours after labeling. This secreted GalNAz-labeled Muc2 mucin formed the inner mucus layer. The goblet cells along the crypt epithelium accumulated labeled mucin vesicles for a longer period and secretion of labeled Muc2 mucin was first observed after 6 to 8 h. This study reveals a fast turnover (1 h) of the inner mucus layer in the distal colon mediated by goblet cells of the luminal surface epithelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app