Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ghrelin induces cardiac lineage differentiation of human embryonic stem cells through ERK1/2 pathway.

BACKGROUND: Ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R), shows cardioprotective activity and regulates the differentiation of several mesoderm-derived cells, including myocytes, adipocytes and osteoblasts. The effect of ghrelin on cardiogenesis and its underlying mechanism, however, have not been studied in detail.

METHODS: The effects of ghrelin on cardiomyocyte differentiation were tested both in human embryonic stem cells (hESCs) cultured in embryoid body (EB)-based differentiation protocol, and in hESCs transplanted into rat hearts. The signaling mechanisms of ghrelin were further investigated under the EB-based culture condition.

RESULTS: The generation of beating EBs and the expression of cardiac-specific markers including cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) were 2 to 3-fold upregulated by ghrelin. Although GHS-R1α protein was expressed in differentiated EBs, the effects of exogenous ghrelin were unchanged by D-[lys(3)]-GHRP-6, a specific GHS-R1α antagonist. Moreover, des-acyl ghrelin, which does not bind to GHS-R1α, displayed similar effects with ghrelin. Importantly, activation of ERK1/2, but not Akt, was induced by ghrelin in the newly-formed EBs, and the ghrelin-induced effects of cardiomyocyte differentiation were abolished by adding specific ERK1/2 inhibitor PD98059, but not specific PI3K inhibitor Wortmannin. In addition, ghrelin promoted the differentiation of grafted hESCs into Sox9- and Flk1-positive mesodermal/cardiac progenitor cells in rat hearts.

CONCLUSIONS: These results suggest that ghrelin induces cardiomyocyte differentiation from hESCs via the activation of the ERK1/2 signaling pathway. Our study, therefore, indicates that using ghrelin may be an effective strategy to promote the differentiation of hESCs into cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app