JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RETRACTED PUBLICATION
Add like
Add dislike
Add to saved papers

Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype.

Pancreatic ductal adenocarcinoma (PDAC) is one of the most frequently diagnosed cancers and the fourth leading cause of cancer-related death in the United States, suggesting that there is an urgent need to design novel strategies for achieving better treatment outcome of patients diagnosed with PDAC. Our previous study has shown that activation of Notch and NF-κB play a critical role in the development of PDAC in the compound K-Ras(G12D) and Ink4a/Arf deficient transgenic mice. However, the exact molecular mechanism by which mutated K-Ras and Ink4a/Arf deficiency contribute to progression of PDAC remains largely elusive. In the present study, we used multiple methods, such as real-time RT-PCR, Western blotting assay, and immunohistochemistry to gain further mechanistic insight. We found that the deletion of Ink4a/Arf in K-Ras(G12D) expressing mice led to high expression of PDGF-D signaling pathway in the tumor and tumor-derived cell line (RInk-1 cells). Furthermore, PDGF-D knock-down in RInk-1 cells resulted in the inhibition of pancreatosphere formation and down-regulation of EZH2, CD44, EpCAM, and vimentin. Moreover, we demonstrated that epithelial-mesenchymal transition (EMT) was induced in the compound mice, which is linked with aggressiveness of PDAC. In addition, we demonstrated that tumors from compound transgenic mice have higher expression of cancer stem cell (CSC) markers. These results suggest that the acquisition of EMT phenotype and induction of CSC characteristics could be linked with the aggressiveness of PDAC mediated in part through the activation of PDGF-D, signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app