JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An investigation of the mechanisms of hydrogen sulfide-induced vasorelaxation in rat middle cerebral arteries.

Hydrogen sulfide (H(2)S) is an endogenous mediator with peripheral vasorelaxant effects; however, the mechanism of H(2)S-induced vasorelaxation in cerebral blood vessels has not been extensively studied. Vasorelaxation studies were performed on middle cerebral arteries from male Sprague Dawley rats using wire myography. Immunofluorescence staining was used to detect the presence of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE). CSE was present in the endothelium and smooth muscle of middle cerebral arteries. The CSE substrate, L-cysteine, induced vasorelaxation that was sensitive to the CSE inhibitor DL-propargylglycine. This relaxation was independent of endothelium, suggesting that H(2)S was produced in the vascular smooth muscle. The H(2)S donor, sodium hydrogen sulfide (NaHS; 0.1-3.0 mM) produced concentration-dependent relaxation, which was unaffected by endothelium removal. Nifedipine (3 μM) significantly reduced the maximum relaxation elicited by NaHS. Inhibiting potassium (K(+)) conductance with 50 mM K(+) significantly attenuated NaHS-induced relaxation, however, selective blockers of ATP sensitive (K(ATP)), calcium sensitive (K(Ca)), voltage dependent (K(V)), or inward rectifier (K(ir)) channels alone or in combination did not affect the response to NaHS. 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS; 300 μM) caused a significant rightward shift of the NaHS concentration-response curve, but this effect could not be explained by inhibition of Cl(-) channels or Cl(-)/HCO (3)(-) exchange, as selective blockade of these mechanisms had no effect. These findings suggest endogenous H(2)S can regulate cerebral vascular function. The H(2)S-mediated relaxation of middle cerebral arteries is DIDS sensitive and partly mediated by inhibition of L-type calcium channels, with an additional contribution by K channels but not K(ATP), K(Ca), K(V), or K(ir) subtypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app