Detection of QTL for flowering time in multiple families of elite maize

Jana Steinhoff, Wenxin Liu, Jochen C Reif, Giovanni Della Porta, Nicolas Ranc, Tobias Würschum
TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 2012, 125 (7): 1539-51
Flowering time is a fundamental quantitative trait in maize that has played a key role in the postdomestication process and the adaptation to a wide range of climatic conditions. Flowering time has been intensively studied and recent QTL mapping results based on diverse founders suggest that the genetic architecture underlying this trait is mainly based on numerous small-effect QTL. Here, we used a population of 684 progenies from five connected families to investigate the genetic architecture of flowering time in elite maize. We used a joint analysis and identified nine main effect QTL explaining approximately 50 % of the genotypic variation of the trait. The QTL effects were small compared with the observed phenotypic variation and showed strong differences between families. We detected no epistasis with the genetic background but four digenic epistatic interactions in a full 2-dimensional genome scan. Our results suggest that flowering time in elite maize is mainly controlled by main effect QTL with rather small effects but that epistasis may also contribute to the genetic architecture of the trait.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"