English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Study on effects of microRNA-21 antisense oligonucleotide in vivo and in vitro on bionomics of human cervical squamous carcinoma cell lines SiHa].

OBJECTIVE: To explore the effect of microRNA-21 (miR-21) antisense oligonucleotide on the biological characteristics of human cervical squamous carcinoma cell lines SiHa in vivo and in vitro.

METHODS: Specific phosphorothioate antisense oligodeoxynucleotides targeting miR-21 were synthesized and transfected into cervical cancer cells in vitro. Expression of miR-21 in SiHa after transfection was detected by real-time RT-PCR. The cell proliferation was evaluated by MTT assay and colony formation experiment. The cell apoptosis was analyzed by annexin V-FITC/PI analysis. The inhibitory effect of miR-21 antisense oligonucleotide on tumor growth was evaluated by tumor growth curves and immunohistochemistry (MaxVision method). H-E staining was used to document morphological changes and fluorometric TUNEL assay was to detect the apoptotic activity.

RESULTS: After the transfection of antisense miR-21, the expression of miR-21 decreased along with an obvious growth inhibition, compared with that of the control groups (P < 0.05). Colony formation of both cell lines was markedly inhibited with antisense miR-21 (55.6% ± 1.4%), as compared with that in the negative group (98.3% ± 2.0%, P < 0.05). Flow cytometry assay showed that antisense miR-21 expression significantly enhanced the cell apoptosis (6.7% ± 1.3% and 29.4% ± 1.7%, P < 0.05). The tumor-forming rates of miR-21 transfected group, and negative control groups were 3/8 and 6/8, respectively (P < 0.05). Ki-67 proliferative marker staining decreased significantly (42% vs 90%) in the transfected group compared with negative control groups. Extensive dead tumor cells were seen in the miR-21 transfected cells along with a marked increase of apoptosis (P < 0.05).

CONCLUSION: Targeted antisense oligonucleotide miR-21 effectively suppresses the growth of cervical carcinoma SiHa cells both in vitro and in vivo through an induction of apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app