Evidence for the formation of a Mo-H intermediate in the catalytic cycle of formate dehydrogenase

Matteo Tiberti, Elena Papaleo, Nino Russo, Luca De Gioia, Giuseppe Zampella
Inorganic Chemistry 2012 August 6, 51 (15): 8331-9
DFT/BP86/TZVP and DFT/B3LYP/TZVP have been used to investigate systematically the reaction pathways associated with the H-transfer step, which is the rate-determining step of the reaction HCOO(-) ⇄ CO(2) + H(+) + 2e(-), as catalyzed by metalloenzyme formate dehydrogenase (FDH). Actually, the energetics associated with the transfer from formate to all H (proton or hydride) acceptors that are present within the FDH active site have been sampled. This study points to a viable intimate mechanism in which the metal center mediates H transfer from formate to the final acceptor, i.e. a selenocysteine residue. The Mo-based reaction pathway, consisting of a β-H elimination to metal with concerted decarboxylation, turned out to be favored over previously proposed routes in which proton transfer occurs directly from HCOO(-) to selenocysteine. The proposed reaction pathway is reminiscent of the key step of metal-based catalysis of the water-gas shift reaction.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"