Add like
Add dislike
Add to saved papers

A procyanidin trimer, C1, promotes NO production in rat aortic endothelial cells via both hyperpolarization and PI3K/Akt pathways.

Procyanidins, which are condensed catechins, have been elucidated as absorbable polyphenols, but their health-benefits remain unclear. The aim of this study was, thus, to clarify the efficacy and mechanism of each procyanidin oligomer in NO activation in rat aortic endothelial cells (RAECs). Treatment of RAECs with 50μM procyanidin C1 (4β→8 trimer) resulted in a time- and dose-dependent hyperpolarization using the membrane potential-sensitive probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, while no effect was observed for (-)-epicatechin (a monomer) and procyanidin B2 (4β→8 dimer). The C1-induced hyperpolarization was inhibited by iberiotoxin, a specific inhibitor of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, as well as 2-aminoethyl diphenylborinate (2-APB), a store-operated Ca(2+) entry inhibitor. Procyanidin C1 caused a significant increase in NO production from RAECs via phosphorylation of both eNOS and Akt, and the effect was completely inhibited by N(G)-monomethyl-l-arginine or combined treatment with iberiotoxin and the phosphatidylinositol 3-kinase (PI3K) specific inhibitor, wortmannin, as well as combined treatment with 2-APB and wortmannin. Taken together, these findings provide critical evidence that procyanidin C1, but not B2, has potential to induce NO production in RAECs via both Ca(2+)-dependent BK(Ca) channel-mediated hyperpolarization and Ca(2+)-independent PI3K/Akt pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app