MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Secondary mechanical allodynia and hyperalgesia depend on descending facilitation mediated by spinal 5-HT₄, 5-HT₆ and 5-HT₇ receptors

B Godínez-Chaparro, F J López-Santillán, P Orduña, V Granados-Soto
Neuroscience 2012 October 11, 222: 379-91
22796074
In the present study we determined the role of spinal 5-hydroxytriptamine (5-HT) and 5-HT(4/6/7) receptors in the long-term secondary mechanical allodynia and hyperalgesia induced by formalin in the rat. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia in both paws. In addition, formalin increased the tissue content of 5-HT in the ipsilateral, but not contralateral, dorsal part of the spinal cord compared to control animals. Intrathecal (i.t.) administration of 5,7-dihydroxytriptamine (5,7-DHT), a serotonergic neurotoxin, diminished tissue 5-HT content in the ipsilateral and contralateral dorsal parts of the spinal cord. Accordingly, i.t. 5,7-DHT prevented formalin-induced secondary allodynia and hyperalgesia in both paws. I.t. pre-treatment (-10 min) with ML-10302 (5-HT(4) agonist), EMD-386088 (5-HT(6) agonist) and LP-12 (5-HT(7) agonist) significantly increased secondary mechanical allodynia and hyperalgesia in both paws. In contrast, i.t. pre-treatment (-20 min) with GR-125487 (5-HT(4) antagonist), SB-258585 (5-HT(6) antagonist) and SB-269970 (5-HT(7) antagonist) significantly prevented formalin-induced long-term effects in both paws. In addition, these antagonists prevented the pro-nociceptive effect of ML-10302, EMD-386088 and LP-12, respectively. The i.t. post-treatment (6 days after formalin injection) with GR-125487, SB-258585 and SB-269970 reversed formalin-induced secondary allodynia and hyperalgesia in both paws. These results suggest that spinal 5-HT, released from the serotonergic projections in response to formalin injection, activates pre- or post-synaptic 5-HT(4/6/7) receptors at the dorsal root ganglion/spinal cord promoting the development and maintenance of secondary allodynia and hyperalgesia.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
22796074
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"