Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol

Yue Chi, Qing Yuan, Yanjuan Li, Jinchun Tu, Liang Zhao, Nan Li, Xiaotian Li
Journal of Colloid and Interface Science 2012 October 1, 383 (1): 96-102
In this work, we report a facile method to generate core-shell structured Fe(3)O(4)@SiO(2)-Ag magnetic nanocomposite by an in situ wet chemistry route with the aid of polyvinylpyrrolidone as both reductant and stabilizer. This method can effectively prevent Ag nanoparticles from aggregating on the silica surface, thus resulting highly dispersed and small-sized Ag nanoparticles. The as-prepared nanocomposite is composed of a central magnetite core with a strong response to external fields, an interlayer of SiO(2), and numerous highly dispersed Ag nanoparticles with a narrow size distribution. Furthermore, the Fe(3)O(4)@SiO(2)-Ag nanocomposite showed high performance in the catalytic reduction of 4-nitrophenol and could be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 15 times.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"