JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Green synthesis of biphasic TiO₂-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity.

A series of TiO(2)-reduced graphene oxide (RGO) nanocomposites were prepared by simple one-step hydrothermal reactions using the titania precursor, TiCl(4) and graphene oxide (GO) without reducing agents. Hydrolysis of TiCl(4) and mild reduction of GO were simultaneously carried out under hydrothermal conditions. While conventional approaches mostly utilize multistep chemical methods wherein strong reducing agents, such as hydrazine, hydroquinone, and sodium borohydride are employed, our method provides the notable advantages of a single step reaction without employing toxic solvents or reducing agents, thereby providing a novel green synthetic route to produce the nanocomposites of RGO and TiO(2). The as-synthesized nanocomposites were characterized by several crystallographic, microscopic, and spectroscopic characterization methods, which enabled confrimation of the robustness of the suggested reaction scheme. Notably, X-ray diffraction and transmission electron micrograph proved that TiO(2) contained both anatase and rutile phases. In addition, the photocatalytic activities of the synthesized composites were measured for the degradation of rhodamine B dye. The catalyst also can degrade a colorless dye such as benzoic acid under visible light. The synthesized nanocomposites of biphasic TiO(2) with RGO showed enhanced catalytic activity compared to conventional TiO(2) photocatalyst, P25. The photocatalytic activity is strongly affected by the concentration of RGO in the nanocomposites, with the best photocatalytic activity observed for the composite of 2.0 wt % RGO. Since the synthesized biphasic TiO(2)-RGO nanocomposites have been shown to effectively reduce the electron-hole recombination rate, it is anticipated that they will be utilized as anode materials in lithium ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app