Add like
Add dislike
Add to saved papers

Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats.

Syzygium cumini (SC) is well known for its anti-diabetic potential, but the mechanism underlying its amelioration of type 2 diabetes is still elusive. Therefore, for the first time, we investigated whether SC aqueous seed extract (100, 200, or 400 mg/kg) exerts any beneficial effects on insulin resistance (IR), serum lipid profile, antioxidant status, and/or pancreatic β-cell damage in high-fat diet / streptozotocin-induced (HFD-STZ) diabetic rats. Wistar albino rats were fed with HFD (55% of calories as fat) during the experiment to induce IR and on the 10th day were injected with STZ (40 mg/kg, i.p.) to develop type 2 diabetes. Subsequently, after confirmation of hyperglycemia on the 14th day (fasting glucose level > 13.89 mM), diabetic rats were treated with SC for the next 21 days. Diabetic rats showed increased serum glucose, insulin, IR, TNF-α, dyslipidemia, and pancreatic thiobarbituric acid-reactive substances with a concomitant decrease in β-cell function and pancreatic superoxide dismutase, catalase, and glutathione peroxidase antioxidant enzyme activities. Microscopic examination of their pancreas revealed pathological changes in islets and β-cells. These alterations reverted to near-normal levels after treatment with SC at 400 mg/kg. Moreover, hepatic tissue demonstrated increased PPARγ and PPARα protein expressions. Thus, our study demonstrated the beneficial effect of SC seed extract on IR and β-cell dysfunction in HFD-STZ-induced type 2 diabetic rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app