Add like
Add dislike
Add to saved papers

Hirsutanol A induces apoptosis and autophagy via reactive oxygen species accumulation in breast cancer MCF-7 cells.

Hirsutanol A is a novel sesquiterpene compound purified from the marine fungus Chondrostereum sp in the coral Sarcophyton tortuosum. Our previous studies had demonstrated that hirsutanol A exerted potent cytotoxic effect in many kinds of cancer cell lines. Here, the anticancer molecular mechanisms of hirsutanol A were investigated in breast cancer MCF-7 cells. The results showed that hirsutanol A could inhibit cell proliferation, elevate reactive oxygen species (ROS) level, and induce apoptosis and autophagy. Co-treatment with the potent antioxidant agent N-acetyl-L-cysteine could effectively reverse the effect of enhanced ROS production, which in turn, reduces growth inhibition, apoptosis, and autophagy mediated by hirsutanol A. In addition, blocking autophagy by bafilomycin A1 or Atg7-siRNA could synergistically enhance the antiproliferative effect and apoptosis induced by hirsutanol A. These data suggested that hirsutanol A could induce apoptosis and autophagy via accumulation of ROS and co-treatment with an autophagy inhibitor could sensitize MCF-7 cells to hirsutanol A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app