Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture.

Mesenchymal stem cells (MSCs) are regarded as a potential autologous source for cartilage repair, because they can differentiate into chondrocytes by transforming growth factor-beta (TGF-β) treatment under the 3-dimensional (3-D) culture condition. In addition to these molecular and biochemical methods, the mechanical regulation of differentiation and matrix formation by MSCs is only starting to be considered. Recently, mechanical loading has been shown to induce chondrogenesis of MSCs in vitro. In this study, we investigated the effects of a calibrated agitation on the chondrogenesis of human bone MSCs (MSCs) in a 3-D alginate culture (day 28) and on the maintenance of chondrogenic phenotypes. Biomechanical stimulation of MSCs increased: (i) types 1 and 2 collagen formation; (ii) the expression of chondrogenic markers such as COMP and SOX9; and (iii) the capacity to maintain the chondrogenic phenotypes. Notably, these effects were shown without TGF-β treatment. These results suggest that a mechanical stimulation could be an efficient method to induce chondrogenic differentiation of MSCs in vitro for cartilage tissue engineering in a 3-D environment. Additionally, it appears that MSCs and chondrocyte responses to mechanical stimulation are not identical.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app