Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Characterization of the apoLp-III/LPS complex: insight into the mode of binding interaction.

Biochemistry 2012 August 8
Apolipoproteins are able to associate with lipopolysaccharides (LPS), potentially providing protection against septic shock. To gain insight into the molecular details of this binding interaction, apolipophorin III (apoLp-III) from Galleria mellonella was used as a model. The binding of apoLp-III to LPS was optimal around 37-40 °C, close to the LPS phase transition temperature. ApoLp-III formed complexes with LPS from E. coli (serotype O55:B5) with a diameter of ~20 nm and a molecular weight of ~390 kDa, containing four molecules of apoLp-III and 24 molecules of LPS. The LPS-bound form of the protein was substantially more resistant to guanidine-induced denaturation compared to unbound protein. The denaturation profile displayed a multiphase character with a steep drop in secondary structure between 0 and 1 M guanidine-HCl and a slower decrease above 1 M guanidine-HCl. In contrast, apoLp-III bound to detoxified LPS was only slightly more resistant to guanidine-HCl induced denaturation compared to unbound protein. Analysis of size-exclusion FPLC elution profiles of mixtures of apoLp-III with LPS or detoxified LPS indicated a much weaker binding interaction with detoxified LPS compared to intact LPS. These results indicate that apoLp-III initially interacts with exposed carbohydrate regions, but that the lipid A region is required for a more stable LPS binding interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app