Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa.

Progesterone has been identified to be one of the physiological regulators of sperm hyperactivation and acrosome reaction. However, the high sensitivity of human spermatozoa to progesterone implies that many may undergo premature hyperactivation and acrosome reaction thereby compromising their ability to fertilize. We hypothesized that if a spermatozoon has to preclude the occurrence of these events prematurely, there should be differential dose- and time-dependent effects on motility and acrosome reaction. We observed that low concentrations of progesterone (10 and 100 nm) induce sperm motility and activate tyrosine kinase; higher concentrations (1-10 μm) are required to induce extracellular signal regulated kinases 1/2 (Erk1/2), p90 ribosomal S6 kinase (p90RSK), p38 mitogen-activated protein kinase (p38MAPK), c-Jun N-terminal kinase (JNK1) and AKT phosphorylation, hyperactivation and acrosome reaction. The induction of acrosome reaction and tyrosine phosphorylation in response to higher concentration of progesterone is not absolutely dependent on activation of T-type voltage-gated Ca(2+) channel or CatSper as Mibefradil did not completely abrogate progesterone-mediated effects. These results imply that although the spermatozoa are sensitive to low concentrations of progesterone, they only activate motility and tyrosine kinase activation; higher concentrations are required to induce hyperactivation and acrosome reaction probably by activating multiple kinase pathways including the MAPK and AKT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app