Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TGF-β1 induces tissue factor expression in human lung fibroblasts in a PI3K/JNK/Akt-dependent and AP-1-dependent manner.

The disturbance of hemostatic balance, associated with increased tissue factor (TF) expression and activity, occurs in the lungs of patients with idiopathic pulmonary fibrosis (IPF). However, the molecular mechanisms responsible for the regulation of TF expression under profibrotic conditions have not been assessed. We found that transforming growth factor-β1 (TGF-β1) markedly enhanced TF expression in primary human lung fibroblasts (HLFs), whereas platelet-derived growth factor (PDGF)-BB and IGF (insulin-like growth factor)-1 showed only a moderate effect, and PDGB-CC exerted no effect. TGF-β1-induced TF expression correlated with its elevated cell-surface activity, it required de novo gene transcription and protein synthesis, and it was dependent on JNK and Akt activity, because pharmacological inhibition or the knockdown of the previously mentioned kinases prevented TF synthesis. Exposure of HLFs to TGF-β1 activated JNK in a PI3K-dependent manner and induced Akt phosphorylation at threonine 308 and serine 473, but did not change the phosphorylation status of threonine 450. Akt phosphorylation at serine 473 correlated with JNK activity, and co-immunoprecipitation studies revealed a direct interaction between JNK and Akt. Furthermore, TGF-β1-induced TF expression required the recruitment of c-Fos and JunD into a heterodimeric activator protein (AP)-1 complex. Moreover, strong immunoreactivity for phosphorylated Akt and JNK as well as c-Fos and JunD was observed in fibroblasts and myofibroblasts in IPF lungs. In conclusion, PI3K/JNK/Akt and AP-1 synergize to induce TF expression in HLFs after TGF-β1 challenge. Our findings provide new insights into the molecular mechanisms responsible for the regulation of TF expression, and open new perspectives on the treatment of pulmonary fibrosis and other diseases characterized by the inappropriate expression of this cell-surface receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app