JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes.

Beryllium chloride (BeCl(2)) is a highly toxic substance that accumulates in different tissues after absorption. The purpose of this study was to investigate protective role of crocin against BeCl(2)-intoxication in rats. Male Wistar rats were used in this study and categorised into four groups (n=8). Group I served as normal control rats. Group II treated orally with BeCl(2) 86 mg/kg b.w. for five consecutive days. This dose was equivalent to experimental LD(50). Group III treated intraperitoneally with crocin 200 mg/kg b.w. for seven consecutive days. Group IV received crocin for seven consecutive days before BeCl(2) administration. Blood samples and liver and brain homogenates were obtained for haematological, biochemical and RT-PCR examinations. The haematocrit value, RBCs count and haemoglobin concentration were significantly decreased in BeCl(2)-treated rats. A significant increase was observed in rat liver and brain malondialdehyde level and protein carbonyls content in BeCl(2) exposed group compared to the control group, and these values were significantly declined upon administration of crocin. Lactate dehydrogenase levels in rat liver and brain significantly increased compared to the control group and was associated with significant decrease in catalase and superoxide dismutase activities. Reduced glutathione hepatic contents of BeCl(2)-treated rats were significantly decreased. There was significant decline in mRNA expression of catalase and superoxide dismutase genes in BeCl(2)-intoxicated rats compared to the normal rats. Crocin treatment prior to BeCl(2) intake resulted in significant increase in mRNA expressions of catalase and superoxide dismutase genes near to normalcy. The haematological and biochemical parameters were restored near to normal levels. Our results suggested that, BeCl(2) induced oxidation of cellular lipids and proteins and that administration of crocin reduced BeCl(2)-induced oxidative stress combined with initiation of mRNA expression of antioxidant genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app