JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor.

Identifying intra-locus interactions underlying heterotic variation among whole-genome hybrids is a key to understanding mechanisms of heterosis and exploiting it for crop and livestock improvement. In this study, we present the development and first use of the heterotic trait locus (HTL) mapping approach to associate specific intra-locus interactions with an overdominant heterotic mode of inheritance in a diallel population using Sorghum bicolor as the model. This method combines the advantages of ample genetic diversity and the possibility of studying non-additive inheritance. Furthermore, this design enables dissecting the latter to identify specific intra-locus interactions. We identified three HTLs (3.5% of loci tested) with synergistic intra-locus effects on overdominant grain yield heterosis in 2 years of field trials. These loci account for 19.0% of the heterotic variation, including a significant interaction found between two of them. Moreover, analysis of one of these loci (hDPW4.1) in a consecutive F2 population confirmed a significant 21% increase in grain yield of heterozygous vs. homozygous plants in this locus. Notably, two of the three HTLs for grain yield are in synteny with previously reported overdominant quantitative trait loci for grain yield in maize. A mechanism for the reproductive heterosis found in this study is suggested, in which grain yield increase is achieved by releasing the compensatory tradeoffs between biomass and reproductive output, and between seed number and weight. These results highlight the power of analyzing a diverse set of inbreds and their hybrids for unraveling hitherto unknown allelic interactions mediating heterosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app