Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multidirectional high-moment encoding in phase contrast MRI.

The use of phase contrast MRI to measure vascular flow provides a unique method for acquiring quantitative estimates of flow as well as morphological imaging. The quantitative aspects of phase contrast magnetic resonance angiography (PC-MRA) provide unique relationships between measurement parameters and resulting signal to noise ratio of the velocity measurements. This article introduces a new method to exploit these relationships providing increased efficiency, and therefore, higher vessel conspicuity. Signal to noise ratio gains in high-moment PC-MRA are limited by the ability to unalias phase measurements that fall outside the -π to π interval. Unaliasing phase on a per pixel basis is limited by errors in the measurements due to noise and intravoxel flow distributions. Current dual-VENC methods have been shown to be robust to these errors and provide high velocity to noise ratio gains, however, the collection of a required high-VENC set can be inefficient. The presented method provides more time efficient gains in velocity to noise ratio compared to a dual-VENC approach by eliminating the high-VENC acquisitions and using shared information between nonorthogonal measurements. Simulations, phantom, and in vivo angiography are used to characterize the noise performance of each method. The velocity to noise ratio efficiency of the proposed method is shown to be ∼1.7 times greater than the dual-VENC method at the same gradient moment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app