Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

One-shot genetic analysis in monolithic Silicon/Pyrex microdevices.

Modern Lab-on-a-chip (LOC) platforms for genomic applications integrate several biological tasks in a single device. Combination of these processes into a single device minimizes sample loss and contamination problems as well as reducing analysis time and costs. Here we present a study of a microchip platform aimed at analyzing issues arising from the combination of different functions, such as DNA purification from blood, target amplification by PCR and DNA detection in a single silicon-based device. DNA purification is realized through two different strategies: 1) amine groups coating microchannel surfaces and 2) magnetic nanoparticles coated by chitosan. In the first strategy silicon/Pyrex microdevices coated with 3-aminopropyltriethoxysilane (APTES) or 3-2-(2-aminoethylamino)-ethylamino]-propyltrimethoxysilane (AEEA) were examined and their efficiency in human genomic DNA adsorption/desorption was evaluated. APTES treatment was the most suitable for the purification of a reasonable amount of DNA in a state suitable for the following PCR step. The second strategy has instead the main advantage of avoiding an elution step, since the DNA adsorbed on the magnetic nanoparticles can be used as PCR template. On-chip PCR was performed in a custom thermocycler, while the detection of PCR products was carried out by fluorescence reading. A complete genetic analysis was demonstrated on the monolithic silicon/Pyrex microchip, starting from less than 1 [Formula: see text]L of human whole blood and arriving at SNPs identification. The successful integration of DNA purification, amplification and detection on a single microdevice was proven without the need for biological passivation steps and possibly simplifying the realization of genomic detection devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app