Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms underlying reduced P2Y(1) -receptor-mediated relaxation in superior mesenteric arteries from long-term streptozotocin-induced diabetic rats.

Acta Physiologica 2013 January
AIM: Extracellular nucleotides activate cell-surface purinergic (P2) receptors, contribute to the local regulation of vascular tone and play important roles in pathophysiological states. However, little is known about the vasodilator effects of P2Y(1) -receptor activation in diabetic states. We hypothesized that in a model of established type 1 diabetes, long-term streptozotocin (STZ)-induced diabetic rats, the arterial relaxation elicited by a P2Y(1) -receptor agonist would be impaired.

METHODS: Relaxations to adenosine 5'-diphosphate sodium salt (ADP), 2-MeSADP (selective P2Y(1) -receptor agonist) and adenosine 5'-triphosphate disodium salt (ATP) were examined in superior mesenteric artery rings from long-term STZ-induced diabetic rats (at 50-57 weeks after STZ injection). ADP-stimulated nitric oxide (NO) production in the superior mesenteric artery was assessed by measuring the levels of NO metabolites. Mesenteric artery expressions of P2Y(1) receptor, and ADP-stimulated levels of phosphorylated endothelial NO synthase (eNOS) (at Ser(1177) and at Thr(495) ) and eNOS were detected by Western blotting.

RESULTS: Arteries from diabetic rats exhibited (vs. those from age-matched control rats): (i) reduced ADP-induced relaxation, which was partly or completely inhibited by endothelial denudation, by NOS inhibitor treatment and by a selective P2Y(1) -receptor antagonist, (ii) reduced 2-MeSADP-induced relaxation, (iii) reduced ADP-stimulated release of NO metabolites and (iv) impaired ADP-induced stimulation of eNOS activity (as evidenced by reduced the fold increase in eNOS phosphorylation at Ser(1177) with no difference in fold increase in eNOS phosphorylation at Thr(495) ). The protein expression of P2Y(1) receptor did not differ between diabetic and control arteries.

CONCLUSIONS: These results suggest that P2Y(1) -receptor-mediated vasodilatation is impaired in superior mesenteric arteries from long-term type 1 diabetic rats. This impairment is because of reduced P2Y(1) -receptor-mediated NO signalling, rather than to reduced P2Y(1) -receptor expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app