Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Social interaction attenuates stress responses following chronic stress in maternally separated rats.

Brain Research 2012 August 22
Early life stress has been implicated as a risk factor for functional gastrointestinal (GI) disorders. Hypothalamic oxytocin (OXT) is well known to regulate social interactions and affiliative behaviors. We have shown that maternal separation (MS) induces GI dysmotility and impair hypothalamic OXT expression in response to chronic homotypic stress (CHS). We studied whether social interaction can improve GI dysmotility and OXT expression in MS rats. Male neonatal SD rats were exposed to MS for 180 min from postnatal day (PND)-2 to PND-14. After weaning, 3MS rats were housed together (pure MS). In another group, 1MS rat was housed with 2 control rats (mixed MS). Anxiety-like behaviors were evaluated in elevated plus maze (EPM). Solid gastric emptying (GE) and colonic transit (CT) were measured following CHS loading. Expression of corticotropin releasing factor (CRF) and OXT in the paraventricular nucleus (PVN) were evaluated by real time RT-PCR and immunohistochemistry. Pure MS rats demonstrated increased anxiety-like behaviors, which were significantly reduced in mixed MS rats. Delayed GE (31.5±2.8%, n=6) and accelerated CT [Geometric center (GC) =8.9±0.8, n=6] observed in pure MS rats were restored in mixed MS rats (GE=67.8±3.8%, GC=6.7±1.2, n=6, P<0.05) following CHS. OXT mRNA expression was upregulated, while CRF mRNA expression was downregulated in mixed MS rats, compared to pure MS rats. The number of OXT-immunoreactive cells was significantly increased following CHS at the PVN in mixed MS rats. Our study may contribute to the treatment strategies for GI motility disorders associated with early life stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app