JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biocompatibility of CS-PPy nanocomposites and their application to glucose biosensor.

Bioelectrochemistry 2012 December
The intrinsic properties and application potential of nanocolloids are mainly determined by size, shape, composition, and structure. In this case, a novel glucose biosensor was developed by using the chitosan-polypyrrole (CS-PPy) nanocomposites as special modified materials that coating onto the surface of glassy carbon electrode (GCE). The CS-PPy nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Moreover, the interaction of CS-PPy nanocomposites with glucose oxidase (GOD) was also investigated by the combined studies with Fourier transform infrared spectroscopy (FTIR) and circular dichroism spectroscopy (CD). Due to the conductivity of polypyrrole (PPy), good biocompatibility of CS, and advantages of nanoparticles, CS-PPy nanocomposites were chosen and designed to modify the GCE for the retention of GOD's biological activity and the vantage of electron transfer between GOD and electrodes. The GOD biosensor exhibited a fast amperometric response (5s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 5.00×10(-4) to 1.47×10(-1)M, and a low detection limit of 1.55×10(-5)M. The GOD biosensor modified with CS-PPy nanocomposites will have essential meaning and practical application in future that attributed to the simple method of fabrication and good performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app