JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cardiomyopathy in the dystrophin/utrophin-deficient mouse model of severe muscular dystrophy is characterized by dysregulation of matrix metalloproteinases.

Cardiomyopathy is a significant component in Duchenne muscular dystrophy. Although mdx mice are deficient in dystrophin, they only develop mild indicators of cardiomyopathy before 1year-of-age, making therapeutic investigations using this model lengthy. In contrast, mdx mice also lacking utrophin (utrn(-/-);mdx) show severely reduced cardiac contractile function and histological indicators of cardiomyopathy by 8-10weeks-of-age. Here we demonstrate that utrn(-/-);mdx mice show a similar pattern of cardiac damage to that in dystrophic patients. Matrix metalloproteinases required for ventricular remodeling during the evolution of heart failure are upregulated in utrn(-/-);mdx mice concurrent with the onset of cardiac pathology by 10weeks-of-age. Matrix metalloproteinase activity is further dysregulated due to reduced levels of endogenous tissue inhibitors and co-localizes with fibroblasts and collagen I-containing scars. utrn(-/-);mdx mice are therefore a very useful model for investigating potential cardiac therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app