JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders.

A mitochondrial dysfunction causes an abatement in ATP production, the induction of oxidative damage and the propagation of cell death pathways. It is additionally closely related to both glutamate excitotoxicity and neuroinflammation. All of these interconnected aspects of a cellular dysfunction are involved in the pathogenesis of numerous neurological disorders, including those with an acute (e.g. ischemic stroke) or a chronic (e.g. Huntington's disease) onset. Both acute and chronic neurodegenerative disorders have been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism in the pathogenesis of the disease. As regards neuroactive compounds featuring in the pathway, quinolinic acid is a specific agonist of N-methyl-d-aspartate receptors, and a potent neurotoxin with additional and marked free radical-producing and lipid peroxidation-inducing properties. The toxic effects of 3-hydroxy-L-kynurenine are mediated by free radicals. Besides the possibility of increasing brain kynurenic acid concentrations, L-kynurenine may have vasoactive properties, too. Kynurenic acid has proven to be neuroprotective in several experimental settings, but in consequence of its pharmacokinetic properties it is not applicable as systemic administration in human cases. The aim of this short review is to emphasize the common features of cerebral ischemia and Huntington's disease and to highlight therapeutic strategies targeting the kynurenine pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app