Add like
Add dislike
Add to saved papers

Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l'Infarto-VARiability] study).

Frequency-domain optical coherence tomography (FD-OCT) is becoming a useful diagnostic tool for coronary imaging for quantitative coronary analysis. Second-generation FD-OCT produces detailed coronary lumen images. However, the reproducibility of coronary measurements using FD-OCT in humans has not been thoroughly explored. Our goal was to determine the intraobserver, interobserver, and interpullback reproducibility of the in vivo FD-OCT measurements of the lumen area and/or lesion length. Twenty-five patients undergoing coronary angioplasty were included. In all subjects, FD-OCT pullbacks (20 mm/s) were acquired twice from the same coronary segment different from the target lesion, at an interval of 5 minutes, with no other intervention. A total of 9,396 cross-sectional lumen area frames and the relative coronary lesion length of each pullback were analyzed off-line with dedicated software by 2 independent expert readers (A and B). We compared the lumen area and length measurements as follows: pullback 1, read by reader A twice at an interval of 7 days (intraobserver analysis); pullback 1, independently read by readers A and B (interobserver comparison); and pullback 1 versus pullback 2, read by reader A (interpullback comparison). The per-segment and per-frame analyses showed very high and significant correlation coefficients for the interobserver, intraobserver, and interpullback comparisons for the lumen area and lesion length (R ≥0.95 and p <0.001 in all cases). Accordingly, the Bland-Altman estimates of bias showed nonsignificant differences in the interobserver, intraobserver, and interpullback comparisons at all levels, with average biases never >0.150 mm(2) for the lumen area or 0.200 mm for the lesion length. In conclusion, coronary imaging using FD-OCT showed excellent reproducibility, with low intraobserver, interobserver, and interpullback variability for both lumen area and lesion length measurements in humans. Thus, FD-OCT can be proposed for precise analysis in the catheterization laboratory to guide decision making and in clinical trials focusing on imaging end points.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app