Add like
Add dislike
Add to saved papers

Recutting the distal femur to increase maximal knee extension during TKA causes coronal plane laxity in mid-flexion.

Knee 2012 December
BACKGROUND: The aim of this study was to quantify the effects of distal femoral cut height on maximal knee extension and coronal plane knee laxity.

METHODS: Seven fresh-frozen cadaver legs from hip-to-toe underwent a posterior stabilized TKA using a measured resection technique with a computer navigation system equipped with a robotic cutting guide. After the initial femoral resections were performed, the posterior joint capsule was sutured until a 10° flexion contracture was obtained with the trial components in place. Two distal femoral recuts of +2mm each were then subsequently made and the trials were reinserted. The navigation system was used to measure the maximum extension angle achieved and overall coronal plane laxity [in degrees] at maximum extension, 30°, 60° and 90° of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee.

RESULTS: For a 10 degree flexion contracture, performing the first distal recut of +2mm increased overall coronal plane laxity by approximately 4.0° at 30° of flexion (p=0.002) and 1.9° at 60° of flexion (p=0.126). Performing the second +2mm recut of the distal femur increased mid-flexion laxity by 6.4° (p<0.0001) at 30° and 4.0° at 60° of flexion (p=0.01), compared to the 9 mm baseline resection (control). Maximum knee extension increased from 10° of flexion to 6.4° (± 2.5° SD, p<0.005) and to 1.4° (± 1.8° SD, p<0.001) of flexion with each 2mm recut of the distal femur.

CONCLUSIONS: Recutting the distal femur not only increases the maximum knee extension achieved but also increases coronal plane laxity in midflexion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app