Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Measurement of hand volume by bioelectrical impedance spectroscopy.

BACKGROUND: Assessment of lymphedema is frequently based upon measuring the increase in volume of the affected region compared to that of a comparable unaffected region. This requires methods that can measure the volume of body regions that are not only accurate and sensitive but also suitable for use in clinical practice. To date, bioimpedance spectroscopy has been used to measure volume increase due to lymphedema in whole arms but excluding the hand. We report here an impedance-based method for the measurement of hand volume.

METHODS: Impedance measurement electrodes were located on the dorsum of the hand, with the sense electrodes at the level of ulnar styloid and metacarpal-phalangeal joint of the third finger and current drive electrodes on the forearm and at the nail bed of the third finger. The impedances of the hands of 50 participants were measured and hand volumes computed. These were compared with the hand volumes measured by perometry. The region of the hand defined by the impedance measurements was determined, both in vivo and using a hand phantom.

RESULTS: The region of the hand measured by the impedance technique was limited to the palmar volume (i.e., excluding the thumb). Palmar volumes computed from impedance measurements were significantly correlated (r=0.88) with those measured by perometry but were, on average, 8% larger. The impedance technique was sufficiently sensitive to detect the change in hand volume elicited by decrease in vascular volume due to blood draining from the hand on elevation.

CONCLUSIONS: An impedance technique was developed that has the potential to measure the change in hand volume when affected by lymphedema. Bioimpedance spectroscopy has the advantage over currently used perometric or water displacement techniques in that it can measure specifically the change in extracellular fluid, including lymph, rather than simply total hand volume.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app