Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer.

Cancer Research 2012 July 16
Continued androgen receptor (AR) signaling is an established mechanism underlying castration-resistant prostate cancer (CRPC), and suppression of androgen receptor signaling remains a therapeutic goal of CRPC therapy. Constitutively active androgen receptor splice variants (AR-Vs) lack the androgen receptor ligand-binding domain (AR-LBD), the intended target of androgen deprivation therapies including CRPC therapies such as abiraterone and MDV3100. While the canonical full-length androgen receptor (AR-FL) and AR-Vs are both increased in CRPCs, their expression regulation, associated transcriptional programs, and functional relationships have not been dissected. In this study, we show that suppression of ligand-mediated AR-FL signaling by targeting AR-LBD leads to increased AR-V expression in two cell line models of CRPCs. Importantly, treatment-induced AR-Vs activated a distinct expression signature enriched for cell-cycle genes without requiring the presence of AR-FL. Conversely, activation of AR-FL signaling suppressed the AR-Vs signature and activated expression programs mainly associated with macromolecular synthesis, metabolism, and differentiation. In prostate cancer cells and CRPC xenografts treated with MDV3100 or abiraterone, increased expression of two constitutively active AR-Vs, AR-V7 and ARV567ES, but not AR-FL, paralleled increased expression of the androgen receptor-driven cell-cycle gene UBE2C. Expression of AR-V7, but not AR-FL, was positively correlated with UBE2C in clinical CRPC specimens. Together, our findings support an adaptive shift toward AR-V-mediated signaling in a subset of CRPC tumors as the AR-LBD is rendered inactive, suggesting an important mechanism contributing to drug resistance to CRPC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app