Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats.

BACKGROUND AND AIMS: The therapeutic effects of pulsed electromagnetic fields (PEMFs) on osteoporosis have been documented. However, the precise mechanisms by which PEMFs elicit these favorable biological responses are still not fully understood. This study aimed to systematically investigate the effects of PEMFs on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats.

METHODS: Thirty 3-month-old female Sprague Dawley rats were randomly assigned to one of three groups: sham-operated control (sham), ovariectomy (OVX), and ovariectomy with PEMFs treatment (PEMFs). One week following ovariectomy surgery, rats in the PEMFs group were exposed to PEMFs for 40 min/day, 5 days/week, for 12 weeks.

RESULTS: After 12-week interventions, serum 17β-estradiol and bone-specific alkaline phosphatase levels increased in the PEMFs group. Bone mineral density of the femur and the fifth lumbar vertebral body also increased in the PEMFs group. Histomorphometrical studies showed that PEMFs improved trabecular area, trabecular width, and trabecular number by 77.50%, 17.38% and 51.06%, respectively, and reduced trabecular separation by 44.28% compared with the OVX group. Biomechanical studies showed that PEMFs increased maximum load and energy to failure in the fifth lumbar vertebral body. Quantitative real-time RT-PCR analysis showed that PEMFs increased the mRNA expressions of Wnt3a, low-density lipoprotein receptor-related protein 5(LRP5), β-catenin, c-myc and runt-related gene 2 (Runx2), and reduced dickkopf1 (DKK1) in ovariectomized rats. However, mRNA expression of Axin2 was not affected by PEMFs.

CONCLUSIONS: PEMFs can prevent ovariectomy-induced bone loss and deterioration of bone microarchitecture and strength, at least partly, through activation of Wnt/β-catenin signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app