MS-CASPT2 study of hole transfer in guanine-indole complexes using the generalized Mulliken-Hush method: effective two-state treatment

C Butchosa, S Simon, L Blancafort, A Voityuk
Journal of Physical Chemistry. B 2012 July 12, 116 (27): 7815-20
Because hole transfer from nucleobases to amino acid residues in DNA-protein complexes can prevent oxidative damage of DNA in living cells, computational modeling of the process is of high interest. We performed MS-CASPT2 calculations of several model structures of π-stacked guanine and indole and derived electron-transfer (ET) parameters for these systems using the generalized Mulliken-Hush (GMH) method. We show that the two-state model commonly applied to treat thermal ET between adjacent donor and acceptor is of limited use for the considered systems because of the small gap between the ground and first excited states in the indole radical cation. The ET parameters obtained within the two-state GMH scheme can deviate significantly from the corresponding matrix elements of the two-state effective Hamiltonian based on the GMH treatment of three adiabatic states. The computed values of diabatic energies and electronic couplings provide benchmarks to assess the performance of less sophisticated computational methods.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"