Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells.

Primary liver cancer is one of the highly malignant tumours. The traditional surgery, chemotherapy and radiation therapy only established 6% of 5-year survival rate in HCC (hepatocellular carcinoma). Therefore there is an urgent need to develop new therapeutic strategies. HSP90 (heat shock protein 90) is one of the important molecular chaperones and was identified with high expression in the primary liver cancer. In this study, we evaluated the therapeutic effect of specific HSP90 inhibitor 17-DMAG (17-dimethylaminoethylamino-17-demethoxy geldanamycin) in HCC cells. The time and concentration effects of 17-DMAG were investigated in HCC cells. Cell proliferation was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and cell counting. Apoptosis was detected by flow cytometry with staining of Annexin V-FITC/PI (propidium iodide). The protein levels of survivin, cyclin D1, p53 and NF-κB (nuclear factor κB) were measured by Western blotting. 17-DMAG inhibited the proliferation of HCC cells in a time- and concentration-dependent manner. Treatment with 400 nmol/l 17-DMAG for 48 h significantly induced early-stage apoptosis (22.4%). Conversely, it induced less late-stage apoptosis (3.03%). The 5 mg/l of cisplatin induced significantly less early-stage apoptosis (6.5%), but similar proportion of late-stage apoptosis (4.89%) compared with 17-DMAG. Inhibition of HSP90 activity by 400 nmol/l 17-DMAG decreased protein levels of survivin, cyclin D1 and NF-κB protein levels, whereas increased p53 protein level. HSP90 plays a key role in HCC cell growth and survival through regulation of survivin, cyclin D1, p53 and nucleus NF-κB protein levels and the specific HSP90 inhibitor 17-DMAG can play a therapeutic role in HCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app