JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PDCD5 promotes cisplatin-induced apoptosis of glioma cells via activating mitochondrial apoptotic pathway.

Glioma is one of the most common primary brain tumors. Despite surgical resection, radiotherapy, and chemotherapy, the prognosis of patients with malignant glioma remains poor. Programmed cell death 5 (PDCD5) is a newly described pro-apoptotic protein. Our previous study showed that PDCD5 downregulation in gliomas was associated with higher pathological grade. Here, we investigated the effect of PDCD5 on chemosensitivity of glioma cells and its mechanism. We demonstrated that overexpression or knockdown of PDCD5 had no significant effect on the proliferation of glioma cell lines (U87, U251, and T98G) in the absence of chemotherapeutic agents. However, PDCD5 overexpression effectively sensitized U87 cells to chemotherapeutic drugs (cisplatin, carboplatin, and vincristine) in a concentration-dependent manner, while its knockdown resulted in decreased chemosensitivity in U251, T98G, and U87 cells. Importantly, expression of PDCD5 also markedly inhibited tumor cell proliferation and colony formation in the presence of low doses of cisplatin. Furthermore, we found that PDCD5 expression promoted cisplatin-induced apoptosis, increased markedly the activation of caspase-3 and caspase-9, and decreased significantly the ratio of Bcl-2/Bax proteins, but had no effect on the activation of caspase-8. Taken together, our findings indicate that PDCD5 promotes chemosensitivity by activating mitochondria-related apoptotic pathway, and that the combination of PDCD5 and chemotherapeutic drugs such as cisplatin, is expected to be an effective therapeutic strategy for the malignant glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app