Journal Article
Research Support, N.I.H., Extramural
Validation Studies
Add like
Add dislike
Add to saved papers

Simultaneous quantitative determination of bupropion and its three major metabolites in human umbilical cord plasma and placental tissue using high-performance liquid chromatography-tandem mass spectrometry.

A liquid chromatography in tandem with electro-spray ionization mass spectrometry method has been developed and validated for the quantitative determination of bupropion and its major metabolites (hydroxybupropion, threo- and erythrohydrobupropion) in human umbilical cord plasma and placental tissue. The samples were acidified with trichloroacetic acid, and protein precipitated by adding acetonitrile. Chromatographic separation of drug and metabolites was achieved by using a Waters Symmetry C(18) column, with an isocratic elution of 31% methanol and 69% formic acid (0.04%, v/v) aqueous solution at a flow rate of 1.0 mL/min. Detection was carried out by mass spectrometry using positive electro-spray ionization mode, and the compounds were monitored using multiple reactions monitoring method. Deuterium-labeled isotopes of the compounds were used as internal standards. Calibration curves were linear (r(2)>0.99) in the tested ranges. The lower limit of quantification of analytes in umbilical cord plasma samples is <0.72 ng/mL and 0.92 ng/g in placental tissue samples. The relative deviation of this method was <15% for intra- and inter-day assays, and the accuracy ranged between 88% and 105%. The extraction recovery of the four analytes ranged between 89% and 96% in umbilical cord plasma, and 64% and 80% in placental tissue. No significant matrix effect was observed in the presented method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app