Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Physiological significance of the plant circadian clock in natural field conditions.

For many decades, researchers have focused on the self-sustainable oscillations of plant circadian clocks, which can only be observed under artificial constant environmental conditions. However, plants have evolved under natural diurnal conditions where several major environmental cues such as light, temperature and humidity are dramatically changing and interacting with each other. Therefore, little is known about the roles of the plant circadian clock in natural field conditions. Molecular genetic analyses in Arabidopsis thaliana have revealed that some core circadian clock genes are required for the establishment of robust circadian rhythms under artificial diurnal conditions, and that others function only as self-oscillators. However, it is largely unknown yet how those robust rhythms can be obtained under natural diurnal conditions. Recently, an extensive time-course transcriptome analysis of rice (Oryza sativa) leaves in natural field conditions revealed that OsGIGANTEA, the sole rice ortholog of the Arabidopsis GIGANTEA gene, governs the robust diurnal rhythm of rice leaf transcriptomes even under natural diurnal conditions; rice Osgi mutants exhibited severely defective transcriptome rhythms under strong diurnal changes in environmental cues. This review focuses on the physiological significance of the plant circadian clock in natural field conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app