Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway.

OBJECTIVE: Mesenchymal stem cells (MSCs) are considered to be a novel tool for the treatment of rheumatoid arthritis (RA) because of their multipotency to differentiate into osteoblasts and chondrocytes, their immunosuppressive effects, and availability. The aim of this study was to assess the mechanisms of human MSC differentiation into osteoblasts under inflammatory conditions.

METHODS: Human MSCs were cultured in commercialized osteogenic induction medium with inflammatory cytokines for up to 10 days. Osteoblast differentiation was detected by alkaline phosphatase staining and messenger RNA (mRNA) expression of multiple osteoblast markers. Mineralization was assessed by alizarin red S staining.

RESULTS: Among the various cytokines tested, interleukin-1β (IL-1β) induced differentiation of human MSCs into osteoblasts, which was confirmed by alkaline phosphatase activity, expression of RUNX2 mRNA, and strong alizarin red S staining. Among various molecules of the Wnt family, Wnt-5a and receptor tyrosine kinase-like orphan receptor 2 (Ror2), a major receptor of Wnt-5a, were significantly induced in human MSCs by IL-1β. Silencing of either WNT5A or ROR2 by small interfering RNA with 2 different sequences reduced alkaline phosphatase activity, RUNX2 expression, and alizarin red S staining of human MSCs induced by IL-1β.

CONCLUSION: IL-1β effectively and rapidly induced human MSC differentiation into osteoblasts and mineralization, mainly through the noncanonical Wnt-5a/Ror2 pathway. These results suggest potential benefits of IL-1β-treated human MSCs in the treatment of damaged bone as well as in the induction of self-renewal and self-repair of damaged tissue, including osseous tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app