Add like
Add dislike
Add to saved papers

A bacterial artificial chromosome library for sugarcane.

Modern cultivated sugarcane is a complex aneuploid polyploid with an estimated genome size of 3000 Mb. Although most traits in sugarcane show complex inheritance, a rust locus showing monogenic inheritance has been documented. In order to facilitate cloning of the rust locus, we have constructed a bacterial artificial chromosome (BAC) library for the cultivar R570. The library contains 103,296 clones providing 4.5 sugarcane genome equivalents. A random sampling of 240 clones indicated an average insert size of 130 kb allowing a 98% probability of recovering any specific sequence of interest. High-density filters were gridded robotically using a Genetix Q-BOT in a 4 × 4 double-spotted array on 22.5-cm(2) filters. Each set of five filters provides a genome coverage of 4x with 18,432 clones represented per filter. Screening of the library with three different barley chloroplast gene probes indicated an exceptionally low chloroplast DNA content of less than 1%. To demonstrate the library's potential for map-based cloning, single-copy RFLP sugarcane mapping probes anchored to nine different linkage groups and three different gene probes were used to screen the library. The number of positive hybridization signals resulting from each probe ranged from 8 to 60. After determining addresses of the signals, clones were evaluated for insert size and HindIII-fingerprinted. The fingerprints were then used to determine clone relationships and assemble contigs. For comparison with other monocot genomes, sugarcane RFLP probes were also used to screen a Sorghum bicolor BAC library and two rice BAC libraries. The rice and sorghum BAC clones were characterized for insert size and fingerprinted, and the results compared to sugarcane. The library was screened with a rust resistance RFLP marker and candidate BAC clones were subjected to RFLP fragment matching to identify those corresponding to the same genomic region as the rust gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app