JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein kinase C inhibitor AEB071 targets ocular melanoma harboring GNAQ mutations via effects on the PKC/Erk1/2 and PKC/NF-κB pathways.

Somatic GNAQ mutations at codon 209 have been identified in approximately 50% of uveal melanomas and have been reported to be oncogenic through activating PLCβ/PKC/Erk1/2 pathways. We hypothesized that protein kinase C (PKC) may provide new opportunities for therapeutic targeting of uveal melanoma carrying GNAQ mutations. To test this hypothesis, uveal melanoma cells harboring wild-type or mutant GNAQ were treated with the PKC inhibitor AEB071 (sotrastaurin) or infected with lentivirus-expressing short hairpin RNAs (shRNA) targeting PKC isoforms. Notably, AEB071 at low micromolar concentrations significantly inhibited the growth of uveal melanoma cells harboring GNAQ mutations through induction of G(1) arrest and apoptosis. However, AEB071 had little effect on uveal melanoma cells carrying wild-type GNAQ. AEB071-mediated cell inhibition in the GNAQ-mutated uveal melanoma was accompanied by inhibition of extracellular signal-regulated kinase (Erk)1/2 phosphorylation, NF-κB, decreased expression of cyclin D1, survivin, Bcl-xL, and XIAP, and increased expression of cyclin-dependent kinase inhibitor p27(Kip1). AEB071 suppressed the expression of PKC α, β, δ, ε, and θ in GNAQ-mutated uveal melanoma cells. Our findings from shRNA-mediated knockdown studies revealed that these PKC isoforms are functionally important for uveal melanoma cells harboring GNAQ mutations. Furthermore, inhibitors of Erk1/2 and NF-κB pathways reduced viability of uveal melanoma cells. Together, our findings show that AEB071 exerts antitumor action on uveal melanoma cells carrying GNAQ mutations via targeting PKC/Erk1/2 and PKC/NF-κB pathways. Targeted PKC inhibition with drugs such as AEB071 offers novel therapeutic potential for uveal melanoma harboring GNAQ mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app