Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Cardiomyocyte generation using stem cells and directly reprogrammed cells.

Cardiomyocytes are terminally differentiated cells with limited regenerative capacity in the adult heart, making cell replacement therapy an attractive option to repair injured hearts. Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are pluripotent and capable of infinite expansion in vitro, implicating them as ideal cell types for cell replacement therapy. During the past several years, significant advances in iPS cell generation technology, cardiac differentiation, and cell purification protocols were achieved for the development of stem cell-based heart therapies. The discovery of iPS cells has also sparked the novel idea of direct conversion of mature cell types into another cell type without passing through a pluripotent stem cell state. Functional cardiomyocytes could therefore be directly reprogrammed from differentiated somatic cells by transduction of the three cardiac transcription factors, Gata4, Mef2c, and Tbx5. Herein, we review the recent research achievements and discuss future challenges in stem cell-based cardiac generation and direct cardiac reprogramming technology for heart regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app