Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

A switch in aminergic modulation of locomotor CPG output during amphibian metamorphosis.

In the South African clawed frog, Xenopus laevis, a complete functional switch in the mode of locomotion occurs during development from axial, undulatory, tail-based swimming in post-hatching tadpoles to limb-based kick propulsion in the adult froglet. At key stages during the metamorphosis from tadpole to frog both locomotor systems are present, co-functional and subject to modulation by the two ubiquitous biogenic amines, serotonin (5-HT) and noradrenaline (NA), arising from the brainstem. Here we review evidence on the roles of 5-HT and NA in the early maturation and dynamic modulation of spinal locomotor circuitry in the postembryonic tadpole and describe the way in which the modulatory effects of the two amines, which are always in opposition, subsequently switch during the metamorphic period of development. We speculate on the underlying cellular, synaptic and network mechanisms that might be responsible for this change in role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app