COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

The orthosteric agonist 2-chloro-5-hydroxyphenylglycine activates mGluR5 and mGluR1 with similar efficacy and potency.

BACKGROUND: The efficacy, potency, and selectivity of the compound 2-Chloro-5-hydroxyphenylglycine (CHPG), a nominally selective agonist for metabotropic glutamate receptor 5 (mGluR5), were examined with select mGluRs by examining their ability to induce modulation of the native voltage dependent ion channels in isolated sympathetic neurons from the rat superior cervical ganglion (SCG). SCG neurons offer a null mGluR-background in which specific mGluR subtypes can be made to express via intranuclear cDNA injection.

RESULTS: Consistent with previous reports, CHPG strongly activated mGluR5b expressed in SCG neurons with an apparent EC50 around 60 μM. Surprisingly, CHPG also activated two mGluR1 splice variants with a similar potency as at mGluR5 when calcium current inhibition was used as an assay for receptor function. No effect of 1 mM CHPG was seen in cells expressing mGluR2 or mGluR4, suggesting that CHPG only activates group I mGluRs (mGluR1 and 5). CHPG was also able to induce modulation of M-type potassium current through mGluR1, but not as consistently as glutamate. Since this channel is modulated through a Gq-dependent pathway, these data indicate that CHPG may exhibit some biased agonist properties on mGluR1. Closer examination of the voltage-independent, Gq-mediated component of mGluR-induced calcium current modulation data confirmed that some biased agonism was evident, but the effect was weak and inconsistent.

CONCLUSIONS: These data contrast with the established literature which suggests that CHPG is a selective mGluR5 agonist. Instead, CHPG appears to act equally well as an agonist at mGluR1. While some weak biased agonism was observed with CHPG acting on mGluR1, but not mGluR5, favoring Gi/o signaling over Gq/11, this effect does not appear sufficient to fully explain the discrepancies in the literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app