JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Molecular basis for sculpting the endoplasmic reticulum membrane.

The endoplasmic reticulum (ER) is involved in many critical processes, including protein and lipid synthesis and calcium storage. Morphologically, the ER can be divided into two subdomains: a network of interconnected tubules and interspersed sheets. Until recently, how these different compartments form in a continuous membrane system was unclear. Several classes of integral membrane proteins have been identified in the ER; the reticulons and DP1/Yop1p play roles in the generation of ER tubules, and possibly in stabilizing ER sheets, atlastins and Sey1p are dynamin-like GTPases that facilitate tubular network formation by mediating ER membrane fusion, and Climp63, p180, and kinectin are enriched in ER sheets and influence their formation. In this review, we summarize recent advances in our understanding of how these proteins participate in ER shaping. We also discuss possible mechanisms for regulating ER morphology via the cytoskeleton. Lessons learned about sculpting the ER membrane may be applicable to other organelles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app