JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-diet-induced obesity.

Stimulating conversion of white fat to metabolically active adipocytes (beige fat) constitutes a promising strategy against weight gain and its deleterious associated-disorders. We provide direct evidence that prolactin (PRL), best known for its actions on the mammary gland, plays a pivotal role in energy balance through the control of adipocyte differentiation and fate. Here we show that lack of prolactin receptor (PRLR) causes resistance to high-fat-diet-induced obesity due to enhanced energy expenditure and increased metabolic rate. Mutant mice displayed reduced fat mass associated with appearance of massive brown-like adipocyte foci in perirenal and subcutaneous but not in gonadal fat depots under a high-fat diet. Positron emission tomography imaging further demonstrated the occurrence of these thermogenic brown fat depots in adult mice, providing additional support for recruitable brown-like adipocytes (beigeing) in white fat depots. Consistent with the activation of brown adipose tissue, PRLR inactivation increases expression of master genes controlling brown adipocyte fate (PRDM16) and mitochondrial function (PGC1α, UCP1). Altered pRb/Foxc2 expression suggests that this PRL-regulated pathway may contribute to beige cell commitment. Together, these results provide direct genetic evidence that PRLR affects energy balance and metabolic adaptation in rodents via effects on brown adipose tissue differentiation and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app